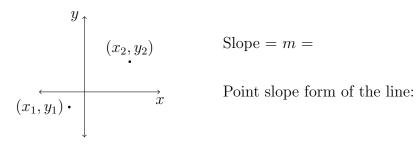

Goals:

- Define, compute, and draw secant and tangent lines.
- Interpret the slope of secant and tangent lines.

Motivating Example:


(a) Write an equation for this line and identify the slope.

(b) If the x-values represent hours since you started hiking and the y-values represent the number of miles between you and your destination, what does the slope represent? What units should the slope be in?

(c) If the x-values represent the number of books a publisher sells and the y-values represent the publisher's revenue (total amount of money received), what does the slope represent? What units should the slope be in?

Background

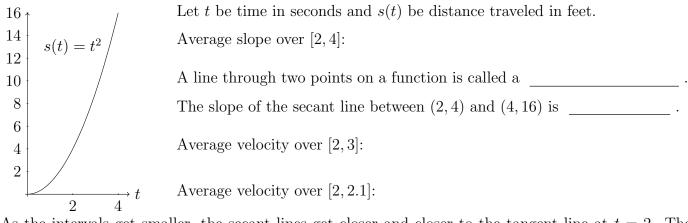
If s(t) is a function that represents ______, then the slope of the line between (a, s(a)) and (b, s(b)) represents ______.

Average Velocity Example 1

s(t)=position (feet)		
Î	\mathbf{S}	s(t)
4000 -	0	200
3000 -	10	500
2000 -	15	1000
1000 -	16	1200
1000	20	2100
10 20 30 40	30	3200
t = time (sec)		

Average velocity over [0, 30]:

Average velocity over [10, 20]:


Average velocity over [15, 16]:

Which of these is the closest estimate to the velocity of the object at t = 15?

Write an equation for (but do not compute) an even more accurate estimate of velocity at t = 15:

In general, to find the average slope of a function f(x) over the interval [a, a + h], compute the **difference quotient**:

Average Velocity Ex. 2

As the intervals get smaller, the secant lines get closer and closer to the tangent line at t = 2. The slope of the **tangent line** of f(t) at t = 2 is exactly equal to the velocity of the object at t = 2.

Let's find the slope of the tangent line at t = 2 using the difference quotient. The average velocity between 2 and 2+h seconds is:

Additional Examples